资料名称: |
代数数论讲义 Hecke 2000年版 |
文件类型: |
PDF文档 |
文件大小: |
8.24 MB |
资料归类: |
数学书籍 |
整理时间: |
2023-10-27 |
软件简介: |
代数数论讲义 作者:Hecke 出版时间: 2000年版 内容简介 Hecke was certainly one of the masters, and in fact, the study of Hecke Lseries and Hecke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book,and Hecke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Hecke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task."此书为英文版! 目录 CHAPTERI ElementsofRationalNumberTheory 1.Divisibility,GreatestCommonDivisors,Modules,Prime Numbers,andtheFundamentalTheoremofNumberTheory (Theorems1-5) 2.CongruencesandResidueClasses(Euler'sfunction(n). Ferrnat'stheorem.Theorems6-9) 3.IntegralPolynomials,FunctionalCongruences,andDivisibility modp(TheoremslO-13a) 4.CongruencesoftheFirstDegree(Theorems14-15) CHAPTERII AbelianGroups 5.TheGeneralGroupConceptandCalculationwithElements ofaGroup(Theorems16-18) 6.SubgroupsandDivisionofaGroupbyaSubgroup(Order ofelements.Theorems19-21) 7.AbelianGroupsandtheProductofTwoAbeliunGroups (Theorems22-25) 8.BasisofanAbelianGroup(Thebasisnumberoragroup belongingtoaprimenumber.Cyclicgroups.Theorems26-28) 9.CompositionofCosetsandtheFactorGroup(Theorem29) 10.CharactersofAbelianGroups(Thegroupofcharacters. Determinationofallsubgroups.Theorems30-33) 11.InfiniteAbelianGroups(Finitebasisofsuchagroupand basisforasubgroup.Theorems34-40) CHAPTERIII AbelianGroupsinRationalNumberTheory 12.GroupsofIntegersunderAdditionandMultiplication (Theorem41) 13.StructureoftheGroupR(n)oftheResidueClassesmodn RelativelyPrimeton(Primitivenumbersmodpandmodp2. Theorems42-45) 14.PowerResidues(Binomialcongruences.Theorems46-47) 15.ResidueCharactersofNumbersmodn 16.QuadraticResidueCharactersmodn(Onthequadratic reciprocitylaw) CHAPTERIV AlgebraofNumberFields 17.NumberFields,PolynomialsoverNumberFields,and Irreducibility(Theorems48-49) 18.AlgebraicNumbersoverk(Theorems50-519 19.AlgebraicNumberFieldsoverk(Simultaneousad)unctionof severalnumbers.Theconjugatenumbers.Theorems52-55) 20.GeneratingFieldElements,FundamentalSystems,and SubfieldsofK(0)(Theorems56-59) CHAPTERV GeneralArithmeticofAlgebraicNumberFields 21.DefinitionofAlgebraicIntegers,Divisibility,andUnits (Theorems60-63) 22.TheIntegersofaFieldasanAbelianGroup:Basisand DiscriminantoftheField(Moduli.Theorem64) 23.FactorizationofIntegersinK():GreatestCommon DivisorswhichDoNotBelongtotheField 24.DefinitionandBasicPropertiesofIdeals(Productofideals. Primeideals.Twodefinitionsofdivisibility.Theorems65-69) 25.TheFundamentalTheoremofIdealTheory(Theorems70-72) 26.FirstApplicationsoftheFundamentalTheorem(Theorems73-75) 27.CongruencesandResidueClassesModuloIdealsandthe GroupofResidueClassesunderAdditionandunder Multiplication(Normofanideal.Fermat'stheoremforideal theory.Theorems76-85) 28.PolynomialswithIntegralAlgebraicCoefficients(Contentof polynomials.Theorems86-87) 29.FirstTypeofDecompositionLawsforRationalPrimes: DecompositioninQuadraticFields(Theorems88-90) 30.SecondTypeofDecompositionTheoremforRationalPrimes: DecompositionintheFieldK(e2xi/m)(Theorems91-92) 31.FractionalIdeals(Theorem93) 32.Minkowski'sTheoremonLinearForms(Theorems94-95) 33.IdealClasses,theClassGroup,andIdealNumbers (Theorems96-98) 34.UnitsandanUpperBoundfortheNumberofFundamental Units(Theorems99-100) 35.Dirichlet'sTheoremabouttheExactNumberofFundamental Units(Theregulatorofthefield) 36.DifferentandDiscriminant(Numberrings.Theorems 101-105) 37.RelativeFieldsandRelationsbetweenIdealsinDifferentFields (Theorem106J 38.RelativeNorms'ofNumbersandIdeals,RelativeDifferents,and RelativeDiscriminants(Theprimefactorsoftherelative different.Theorems107-115) 39.DecompositionLawsintheRelativeFieldsK()(Theorems 116-120) CHAPTERVI IntroductionofTranscendentalMethodsintothe ArithmeticofNumberFields 40.TheDensityoftheIdealsinaClass(Theorem121) 41.TheDensityofIdealsandtheClassNumber(Thenumber ofidealswithgivennorm.Theorem122) 42.TheDedekindZeta-Function(Dirichletseries.Dedekind's zeta-functionanditsbehaviorats=1.Representationby products.Theorems123-125) 43.TheDistributionofPrimeIdealsofDegree1,inParticularthe RationalPrimesinArithmeticProgressions(TheDirichlet serieswithresiduecharactersmodn.Degreeofthecyciotomic fields.Theorems126-131) CHAPTERVII TheQuadraticNumberField 44.SummaryandtheSystemofIdealClasses(Numericalexamples) 45.TheConceptofStrictEquivalenceandtheStructureofthe ClassGroup(Theorems132-134) 46.TheQuadraticReciprocityLawandaNewFormulationofthe DecompositionLawsinQuadraticFields(Theorems135-137) 47.NormResiduesandtheGroupofNormsofNumbers (Theorems138-141) 48.TheGroupofIdealNorms,theGroupofGenera,and DeterminationoftheNumberofGenera(Theorems142-145) 49.TheZeta-Functionofk()andtheExistenceofPrimeswith PrescribedQuadraticResidueCharacters(Theorems 146-147) 50.DeterminationoftheClassNumberofk()withoutUsaofthe Zeta-Function(Theorem148) 54.DeterminationoftheClassNumberwiththeHelpofthe Zeta-Function(Theorem149) 52.GaussSumsandtheFinalFormulafortheClassNumber (Theorems150-152) 53.ConnectionbetweenIdealsink()andBinaryQuadratic Forms(Theorems153-154) CHAPTERVIII TheLawofQuadraticReciprocityinArbitrary NumberFields 54.QuadraticResidueCharactersandGaussSumsinArbitrary NumberFields(Theorems155-156) 55.Theta-functionsandTheirFourierExpansions(Theorems 157-158) 56.ReciprocitybetweenGaussSumsinTotallyRealFields(The transformationformulaofthethetafunctionandthereciprocity betweenGaussstansfortotallyrealfields.Theorems159-161) 57.ReciprocitybetweenGaussSumsinArbitraryAlgebraic NumberFields(Thetransformationformulaofthetheta functionandthereciprocitybetweenGausssumsforarbitrary fields.Theorems162-163) 58.TheDeterminationoftheSignofGaussSumsintheRational NumberField(Theorem164) 59.TheQuadraticReciprocityLawandtheFirstPartofthe SupplementaryTheorem(Theorems165-167) 60.RelativeQuadraticFieldsandApplicationstotheTheoryof QuadraticResidues(Existenceofprimeidealswith prescribedresiduecharacters.Theorems168-169) 61.NumberGroups,IdealGroups,andSingularPrimaryNumbers 61.NumberGroups,IdealGroups,andSingularPrimaryNumbers 62.TheExistenceoftheSingularPrimaryNumbersand SupplementaryTheoremsfortheReciprocityLaw(Theorems 170-175) 63.APropertyofFieldDifferentsandtheHilbertClassFieldof RelativeDegree2(Theorems176-179) ChronologicalTable References |
下载地址: |
[百度网盘下载 ] |
|
|
|